Comparison of Benford's Law and the proportion of first digits from file sizes of files on my laptop hard drive.

A Christmas Cracker Puzzle – Part 2

Before Christmas I set a little puzzle. The challenge was to calculate the proportion of file sizes on your hard drive that start with the digit 1. I predicted that the proportion you got was around 30%. I’ll now explain why.

Benford’s Law

The reason why around 30% of all the file sizes on your hard disk start with 1 is because of Benford’s Law. Computer file sizes approximately follow Benford’s Law.

What is Benford’s Law?

Benford’s Law says that for many datasets the first digits of the numbers in the dataset follow a particular distribution. Under Benford’s Law, the probability of the first digit being equal to d is,

\log_{10} ( 1 + \frac{1}{d} )\;\;\;.\;\;\;\;\;\; Eq.1

So, in a dataset that follows Benford’s Law, the probability that a number starts with a 1 is around 30%. Hence, the percentage of file sizes that start with 1 is around 30%.

The figure below shows a comparison of the distribution in Eq.1 and the distribution of first digits of file sizes for files in the “Documents” folder of my hard drive. The code I used to calculate the empirical distribution in the figure is given at the end of this post. You can see the distribution derived from my files is in very close agreement with the distribution predicted by Eq.1. The agreement between the two distributions in the figure is close but not perfect – more on that later.

Benford’s Law is named after Frank Benford, whose discovered the law in 1938 – see the later section for some of the long history of Benford’s Law. Because Benford’s Law is concerned with the distribution of first digits in a dataset, it is also commonly referred to as, ‘the first digit law’ and also the ‘significant digit law’.

Benford’s Law is more than just a mathematical curiosity or Christmas cracker puzzle. It has some genuine applications – see later. It has also fascinated mathematicians and statisticians because it applies to so many diverse datasets. Benford’s Law has been shown to apply to datasets as different as the size of rivers and election results.

What’s behind Benford’s Law

The intuition behind Benford’s Law is that if we think there are no a priori constraints on what value a number can take then we can make the following statements,

  1. We expect the numbers to be uniformly distributed in some sense – more on that in a moment.
  2. There is no a priori scale associated with the distribution of numbers. So, I should be able to re-scale all my numbers and have a distribution with the same properties.

Overall, this means we expect the numbers to be uniformly distributed on a log scale.

This intuition helps us identify when we should expect a dataset to follow Benford’s Law, and it also gives us a hand-waving way of deriving the form of Benford’s Law in Eq.1.

Deriving Benford’s Law

First, we restrict our numbers to be positive and derive Benford’s Law. The fact that Benford’s Law would also apply to negative numbers once we ignore their sign should be clear.

We’ll also have to restrict our positive numbers to lying in some range [\frac{1}{x_{max}}, x_{max}] so that the probability distribution of x is properly normalized. We’ll then take the limit x_{max}\rightarrow\infty at the end. For convenience, well take x_{max} to be of the form x_{max} = 10^{k_{max}}, and so the limit x_{max}\rightarrow\infty corresponds to the limit k_{max}\rightarrow\infty.

Now, if our number x lies in [\frac{1}{x_{max}}, x_{max}] and is uniformly distributed on a log-scale, then the probability density for x is,

p(x) = \frac{1}{2\ln x_{max}} \frac{1}{x}\;\;.

The probability of getting a number between, say 1 and 2 is then,

{\rm{Prob}} \left ( 1 \le x < 2 \right ) = \frac{1}{2\ln x_{max}} \int_{1}^{2} \frac{1}{x} dx \;\;.

Now numbers which start with a digit d are of the form a10^{k} with a \in [d, d+1) and k = -k_{max},\ldots,-2,-1,0,1,2,\ldots,k_{max}. So, the total probability of getting such a number is,

{\rm{Prob}} \left ( {\rm{first\;digit}}\;=\;d \right ) = \sum_{k=-k_{max}}^{k_{max}}\frac{1}{2\ln x_{max}}\int_{d10^{k}}^{(d+1)10^{k}} \frac{1}{x} dx\;\; ,

and so after performing the integration and summation we have,

{\rm{Prob}} \left ( {\rm{first\;digit}}\;=\;d \right ) = \frac{2k_{max}}{2\ln x_{max}} \left [ \ln ( d+1 ) - \ln d\right ]\;\;.

Recalling that we have chosen x_{max} =10^{k_{max}}, we get,

{\rm{Prob}} \left ( {\rm{first\;digit}}\;=\;d \right ) = \frac{1}{\ln 10} \left [ \ln ( d+1 ) - \ln d\right ]\;=\;\log_{10} \left ( 1 + \frac{1}{d}\right )\;\;.

Finally, taking the limit k_{max}\rightarrow\infty gives us Benford’s Law for positive valued numbers which are uniformly distributed on a log scale.

Ted Hill’s proof of Benford’s Law

The derivation above is a very loose (lacking formal rigour) derivation of Benford’s Law. Many mathematicians have attempted to construct a broadly applicable and rigorous proof of Benford’s Law, but it was not until 1995 that a widely accepted proof was derived by Ted Hill from Georgia Institute of Technology. You can find Hill’s proof here. Ted Hill’s proof also seemed to reinvigorate interest in Benford’s Law. In the following years there were various popular science articules on Benford’s Law, such as this one from 1999 by Robert Matthews in The New Scientist. This article was where I first learned about Benford’s Law.

Benford’s Law is base invariant

The approximate justification we gave above for why Benford’s Law works made no explicit reference to the fact that we were working with numbers expressed in base 10. Consequently, that justification would be equally valid if we were working with numbers expressed in base b. This means that Benford’s Law is base invariant, and a similar derivation can be made for base b.

The distribution of first digits given in Eq.1 is for numbers expressed in base 10. If we express those same numbers in base b and write a number x in base b  as,

x = x_{1}x_{2}x_{3}\ldots x_{K}\;\;,

then the first digit x_{1} is in the set \{1,2,3,\ldots,b-1\} and the probability that the first digit has value d is given by,

{\rm{Prob}} \left ( x_{1}\;=\;d \right ) = \log_{b}\left ( 1 + \frac{1}{d}\right )\;\;\;,\; d\in\{1,2,3,\ldots,b-1\}\;\;\;.\;\;\;\;\; Eq.2

When should a dataset follow Benford’s Law?

The broad intuition behind Benford’s Law that we outlined above also gives us an intuition about when we should expect Benford’s Law to apply. If we believe the process generating our data is not restricted in the scale of the values that can be produced and there are no particular values that are preferred, then a large dataset drawn from that process will be well approximated by Benford’s Law. These considerations apply to many different types of data generating processes, and so with hindsight it should not come as a surprise to us that many different datasets appear to follow Benford’s Law closely.

This requires that no scale emerges naturally from the data generating process. This means the data values shouldn’t be clustered around a particular value, or particular values. So, data drawn from a Gaussian distribution would not conform to Benford’s law. From the perspective of the underlying processes that produce the data, this means there shouldn’t be any equilibrium process at work, as that would drive the measured data values to the value corresponding to the equilibrium state of the system. Likewise, there should be no constraints on the system generating the data, as the constraints will drive the data towards a specific range of values.

However, no real system is truly scale-free. The finite system size always imposes a scale. However, if we have data that can vary over many orders of magnitude then from a practical point of view, we can regard that data as effectively scale free. I have found that data that varies over 5 orders of magnitude is usually well approximated by Benford’s law.

Because a real-world system cannot really ever truly satisfy the conditions for Benford’s Law, we should expect that most real-world datasets will only show an approximate agreement with Benford’s Law. The agreement can be very close, but we should still expect to see deviations from Benford’s Law – just as we saw in the figure at the top of this post. Since real-world datasets won’t follow Benford’s Law precisely, we also shouldn’t expect to see a real-world dataset follow the base-invariant form of Benford’s Law in Eq.2 for every choice of base. In practice, this means that there is usually a particular base b for which we will see closer agreement with the distribution in Eq.2, compared to other choices of base.

Why computer file sizes follow Benford’s Law

Why does Benford’s Law apply to the sizes of the files on your computer? Those file sizes can span over several orders of magnitude – from a few hundred bytes to several hundred megabytes. There is also no reason why my files should cluster around a particular file size – I have photos, scientific and technical papers, videos, small memos, slides, and so on. It would be very unusual if all those different types of files, from different use cases, end up having very similar sizes. So, I expect Benford’s Law to be a reasonable description of the distribution of first digits of the file sizes of files in my “Documents” folder.

However, if the folder I was looking at just contained, say, daily server logs, from a server that ran very unexciting applications, I would expect the server log file size to be very similar from one day to the next. I would not expect Benford’s Law to be a good fit to those server log file sizes.

In fact a significant deviation from Benford’s Law in the file size distribution would indicate that we have a file size generation process that is very different from a normal human user going about their normal business. That may be entirely innocent, or it could be indicative of some fraudulent activity. In fact, fraud detection is one of the practical applications of Benford’s Law.

The history of Benford’s Law

Simon Newcomb

One of the reasons why the fascination with Benford’s Law endures is the story of how it was discovered. With such an intriguing mathematical pattern, it is perhaps no surprise to learn that Frank Benford was not the first scientist to spot the first-digit pattern. The astronomer Simon Newcomb had also published a paper on, “the frequency of use of the different digits in natural numbers” in 1881. Before the advent of modern computers, scientists and mathematicians computed logarithms by looking them up in mathematical tables – literally books of logarithm values. I still have such a book from when I was in high-school. The story goes that Newcomb noticed that in a book of logarithms the pages were grubbier, i.e. used more, for numbers whose first significant digit was 1. From this Newcomb inferred that numbers whose first significant digit was 1 must be more common, and he supposedly even inferred the approximate frequency of such numbers from the relative grubbiness of the pages in the book of logarithms.

In more recent years the first-digit law is also referred to as the Newcomb-Benford Law, although Benford’s Law is still more commonly used because of Frank Benford’s work in popularizing it.

Benford’s discovery

Frank Benford rediscovered the law in 1938, but also showed that data from many diverse datasets – from the surface area of rivers to population sizes of US counties – appeared to follow the distribution in Eq.1. Benford then published his now famous paper, “The law of anomalous numbers”.

Applications of Benford’s Law

There are several books on Benford’s Law. One of the most recent, and perhaps the most comprehensive is Benford’s Law: Theory and Applications. It is divided into 2 sections on General Theory (a total of 6 chapters) and 4 sections on Applications (a total of 13 chapters). Those applications cover the following:

  • Detection of accounting fraud
  • Detection of voter fraud
  • Measurement of the quality of economic statistics
  • Uses of Benford’s Law in the natural sciences, clinical sciences, and psychology.
  • Uses of Benford’s Law in image analysis.

I like the book because it has extensive chapters on applications written by practitioners and experts on the uses of Benford’s Law, but the application chapters make links back to the theory.

Many of the applications, such as fraud detection, are based on the idea of detecting deviations from the Benford Law distribution in Eq.1. If we have data that we expect to span several orders of magnitude and we have no reasons to suspect the data values should naturally cluster around a particular value, then we might expect it to follow Benford’s Law closely. This could be sales receipts from a business that has clients of very different sizes and sells goods or services that vary over a wide range of values. Any large deviation from Benford’s Law in the sales recipts would then indicate the presence of a process that produces very specific receipt values. That process could be data fabrication, i.e. fraud. Note, this doesn’t prove the data has been fraudulently produced, it just means that the data has been produced by a process we wouldn’t necessarily expect.

My involvement with Benford’s Law

In 2001 I published a paper demonstrating that data from high-throughput gene expression experiments tended to follow Benford’s Law. The reasons why mRNA levels should follow Benford’s Law is ultimately those we have already outlined – mRNA levels can range over many orders of magnitude and there are no a priori molecular biology reasons why, across the whole genome, mRNA levels should be centered around a particular value.

In December 2007 a conference on Benford’s Law was organized by Prof. Steven Miller from Brown University and others. The conference was held in a hotel in Sante Fe and was sponsored/funded by Brown University, the University of New Mexico, Universidade de Vigo, and the IEEE. Because of my 2001 paper, I received an invitation to talk at the workshop.

For me, the workshop was very memorable for many reasons,

  1. I had a very bad cold at the time.
  2. Due to snow in both the UK and US, I was snowbound overnight in Chicago airport (sleeping in the airport), and only just made a connecting flight in Dallas to Albuquerque. Unfortunately, my luggage didn’t make the flight connection and ended up getting lost in all the flight re-arrangements and didn’t show up in Santa Fe until 2 days later.
  3. It was the first time I’d seen snow in the desert – this really surprised me. I don’t know why, it just did.
  4. Because of my cold, I hadn’t finished writing my presentation. So I stayed up late the night before my talk to finish writing my slides. To sustain my energy levels through the night whilst I was finishing writing my slides, I bought a Hershey bar thinking it would be similar to chocolate bars in the UK. I took a big bite from the Hershey bar. Never again.
  5. But this was all made up for by the fact I got to sit next to Ted Hill during the workshop dinner. Ted was one of the most genuine and humble scientists I have had the pleasure of talking to. Secondly, the red wine at the workshop dinner was superb.

From that workshop Steven Miller organized and edited the book on Benford’s Law I referenced above. Hence why I think that book is one of the best on Benford’s Law, although I am biased as I contributed one of the chapters – Chapter 16 on “Benford’s Law in the Natural Sciences”

My Python code solution

To end this post, I have given below the code I used to calculate the distribution of first digits of the file sizes on my laptop hard drive.

import numpy as np

# We'll use the pathlib library to recurse over
# directories
from pathlib import Path

# Specify the top level directory
start_dir = "C:\\Users\\David\\Documents"

# Use a list comprehension to recursively loop over all sub-directories 
# and get the file sizes
filesizes = [path.lstat().st_size for path in list(Path(start_dir).glob('**/*' )) if path.is_file()]

# Now count how many file sizes start with a 1
proportion1 = np.sum([int(str(i)[0])==1 for i in filesizes])/len(filesizes)

# Print the result
print("Proportion of filesizes starting with 1 = " + str(proportion1))
print("Number of files = " + str(len(filesizes)))

# Calculate the first-digit proportions for all digits 1 to 9
proportions = np.zeros(9)
for i in range(len(filesizes)):
    proportions[int(str(filesizes[i])[0])-1] += 1.0 
    
proportions /= len(filesizes)

© 2025 David Hoyle. All Rights Reserved

You’re going to need a bigger algorithm – Amdahl’s Law and your responsibilities as a Data Scientist

You have some prototype Data Science code based on an algorithm you have designed. The code needs to be productionized, and so sped up to meet the specified production run-times. If you stick to your existing technology stack, unless the runtimes of your prototype code are within a factor of 1000 of your target production runtimes, you’ll need a bigger, better algorithm. There is a limit to what speed up your technology stack can achieve. Why is this? Read on and I’ll explain. And I’ll explain what you can do if you need more than a 1000-fold speed up of your prototype.

Speeding up your code with your current tech stack

There are two ways in which you can speed up your prototype code,

  1. Improve the efficiency of the language constructs used, e.g. in Python replacing for loops with list comprehensions or maps, refactoring subsections of the code etc.
  2. Horizontal scaling of your current hardware, e.g. adding more nodes to a compute cluster, adding more executors to the pool in a Spark cluster.

Point 2 assumes that your calculation is compute bound and not memory bound, but we’ll stick with that assumption for this article. We also exclude the possibility that the productionization team can invent or buy a new technology that is sufficiently different or better than your current tech stack – it would be an unfair ask of the ML engineers to have to invent a whole new technology just to compensate for your poor prototype. They may be able to to, but we are talking solely about using your current tech stack and we assume that it does have some capacity to be horizontally scaled.

So what speed ups can we expect from points 1 and 2 above? Point 1 is always possible. There are always opportunities for improving code efficiency that you or another person will spot when looking at the code for a second time. A more experienced programmer reviewing the code can definitely help. But let’s assume that you’re a reasonably experienced Data Scientist yourself. It is unlikely that your code is so bad that a review by someone else would speed it up by more than a factor of 10 or so.

So if the most we expect from code efficiency improvements is a factor 10 speed up, what speed up can we additionally get from horizontal scaling of your existing tech stack? A factor of 100 at most. Where does this limit of 100 come from? Amdahl’s law.

Amdahl’s law

Amdahl’s law is a great little law. Its origins are in High Performance Computing (HPC), but it has a very intuitive basis and so is widely applicable. Because of that it is worth explaining in detail.

Imagine we have a task that currently takes time T to run. Part of that task can be divided up and performed by separate workers or resources such as compute nodes. Let’s use P to denote the fraction of the task that can be divided up. We choose the symbol P because this part of the overall task can be parallelized. The fraction that can’t be divided up we denote by S, because it is the non-parallelizable or serial part of the task. The serial part of the task represents things like unavoidable overhead and operations in manipulating input and output data-structures and so on.

Obviously, since we’re talking about fractions of the overall runtime T, the fractions P and S must sum to 1, i.e.

Eq1

The parallelizable part of the task takes time TP to run, whilst the serial part takes time TS to run.

What happens if we do parallelize that parallelizable component P? We’ll parallelize it using N workers or executors. When N=1, the parallelizable part took time TP to run, so with N workers it should (in an ideal world) take time TP/N to run. Now our overall run time, as a function of N is,

Eq2

This is Amdahl’s law1. It looks simple but let’s unpack it in more detail. We can write the speed up factor in going from T(N=1) to T(N) as,

Eq3

The figure below shows plots of the speed-up factor against N, for different values of S.

AmdahlLawPlots

From the plot in the figure, you can see that the speed up factor initially looks close to linear in N and then saturates. The speed up at saturation depends on the size of the serial component S. There is clearly a limit to the amount of speed up we can achieve. When N is large, we can approximate the speed up factor in Eq.3 as,

Eq4

From Eq.4 (or from Eq.3) we can see the limiting speed up factor is 1/S. The mathematical approximation in Eq.4 hides the intuition behind the result. The intuition is this; if the total runtime is,

Eq5

then at some point we will have made N big enough that P/N is smaller than S. This means we have reduced the runtime of the parallelizable part to below that of the serial part. The largest contribution to the overall runtime is now the serial part, not the parallelizable part. Increasing N further won’t change this. We have hit a point of rapidly diminishing returns. And by definition we can’t reduce S by any horizontal scaling. This means that when P/N becomes comparable to S, there is little point in increasing N further and we have effectively reached the saturation speed up.

How small is S?

This is the million-dollar question, as the size of S determines the limiting speed up factor we can achieve through horizontal scaling. A larger value of S means a smaller speed up factor limit. And here’s the depressing part – you’ll be very lucky to get S close to 1%, which would give you a speed up factor limit of 100.

A real-world example

To explain why S = 0.01 is around the lowest serial fraction you’ll observe in a real calculation, I’ll give you a real example. I first came across Amdahl’s law in 2007/2008, whilst working on a genomics project, processing very high-dimensional data sets2. The calculations I was doing were statistical hypothesis tests run multiple times.

This is an example of an “embarrassingly parallel” calculation since it just involves splitting up a dataframe into subsets of rows and sending the subsets to the worker nodes of the cluster. There is no sophistication to how the calculation is parallelized, it is almost embarrassing to do – hence the term “embarrassingly parallel”.

The dataframe I had was already sorted in the appropriate order, so parallelization consisted of taking a small number of rows off the top of dataframe and sending to a worker node and repeating. Mathematically, on paper, we had S=0. Timings of actual calculations with different numbers of compute nodes and fitting an Amdahl’s law curve to those timings revealed we had something between S=0.01 and S=0.05.

A value of S=0.01 gaves us a maximum speed up factor of 100 from horizontal scaling. And this was for a problem that on paper had S=0. In reality, there is always some code overhead in manipulating the data. A more realistic limit on S for an average complexity piece of Data Science code would be S=0.05 or S=0.1, meaning we should expect limits on the speed up factor of between 10 and 20.

What to do?

Disappointing isn’t it!? Horizontal scaling will speed up our calculation by at most a factor of 100, and more likely only a factor of 10-20. What does it mean for productionizing our prototype code? If we also include the improvements in the code efficiency, the most we’re likely to be able to speed up our prototype code by is a factor of 1000 overall. It means that as a Data Scientist you have a responsibility to ensure the runtime of your initial prototype is within a factor of 1000 of the production runtime requirements.

If a speed up of 1000 isn’t enough to hit the production run-time requirements, what can we do? Don’t despair. You have several options. Firstly, you can always change the technology underpinning your tech stack. Despite what I said at the beginning of this post, if you are repeatedly finding that horizontal scaling of your current tech stack does not give you the speed-up you require, then there may be a case for either vertical scaling the runtime performance of each worker node or using a superior tech stack if one exists.

If improvement by vertical scaling of individual compute nodes is not possible, then there are still things you can do to mitigate the situation. Put the coffee on, sharpen your pencil, and start work on designing a faster algorithm. There are two approaches you can use here,

  • Reduce the performance requirements: This could be lowering the accuracy through approximations that are simpler and quicker to calculate. For example, if your code involves significant matrix inversion operations you may be able to approximate a matrix by its diagonal and explicitly hard code the calculation of its inverse rather than performing expensive numerical inversion of the full matrix.
  • Construct a better algorithm: There are no easy recipes here. You can get some hints on where to focus your effort and attention by identifying the runtime bottlenecks in your initial prototype. This can be done using code profiling tools. Once a bottleneck has been identified, you can then progress by simplifying the problem and constructing a toy problem that has the same mathematical characteristics as the original bottleneck. By speeding up the toy problem you will learn a lot. You can then apply those learnings, even if only approximately, to the original bottleneck problem.

  1. When I first stumbled across Amdahl’s law, I mentioned it to a colleague working on the same project as I was. They were a full-stack software developer and immediately, said “oh, you mean Amdahl’s law about limits on the speed you can write to disk?”. It turns out there is another Amdahl’s Law, often called “Amdahl’s Second Law”, or “Amdahl’s Other Law”, or “Amdahl’s Lesser Law”, or “Amdahl’s Rule-Of-Thumb”. See this blog post, for example, for more details on Amdahl’s Second Law.
  2. Hoyle et. al, “Shared Genomics: High Performance Computing for distributed insights in genomic medical research”, Studies in Health Technology & Informatics 147:232-241, 2009.

© 2024 David Hoyle. All Rights Reserved

How many iterations are needed for the bisection algorithm?

<TL;DR>

  • The bisection algorithm is a very simple algorithm for finding the root of a 1-D function.
  • Working out the number of iterations of the algorithm required to determine the root location within a specified tolerance can be determined from a very simple little hack, which I explain here.
  • Things get more interesting when we consider variants of the bisection algorithm, where we cut an interval into unequal portions.

</TL;DR>

A little while ago a colleague mentioned that they were repeatedly using an off-the-shelf bisection algorithm to find the root of a function. The algorithm required the user to specify the number of iterations to run the bisection for. Since my colleague was running the algorithm repeatedly they wanted to set the number of iterations efficiently and also to achieve a guaranteed level of accuracy, but they didn’t know how to do this.

I mentioned that it was very simple to do this and it was a couple of lines of arithmetic in a little hack that I’d used many times. Then I realised that the hack was obvious and known to me because I was old – I’d been doing this sort of thing for years. My colleague hadn’t. So I thought the hack would be a good subject for a short blog post.

The idea behind a bisection algorithm is simple and illustrated in Figure 1 below.

How the bisection algorithm works
Figure 1: Schematic of how the bisection algorithm works

At each iteration we determine whether the root is to the right of the current mid-point, in the right-hand interval, or to the left of the current mid-point, in the left-hand interval. In either case, the range within which we locate the root halves. We have gone from knowing it was in the interval [x_{lower}, x_{upper}], which has width x_{upper}-x_{lower}, to knowing it is in an interval of width \frac{1}{2}(x_{upper}-x_{lower}). So with every iteration we reduce our uncertainty of where the root is located by half. After N iterations we have reduced our initial uncertainty by (1/2)^{N}. Given our initial uncertainty is determined by the initial bracketing of the root, i.e.  an interval of width (x_{upper}^{(initial)}-x_{lower}^{(initial)}), we can now work out that after N iterations we have narrowed down the root to an interval of width {\rm initial\;width} \times \left ( \frac{1}{2}\right ) ^{N}. Now if we want to locate the root to within a tolerance {\rm tol}, we just have to keep iterating until the uncertainty reaches {\rm tol}. That is, we run for N iterations where N satisfies,

\displaystyle N\;=\; -\frac{\ln({\rm initial\;width/tol})}{\ln\left (\frac{1}{2} \right )}

Strictly speaking we need to run for \lceil N \rceil iterations. Usually I will add on a few extra iterations, e.g. 3 to 5, as an engineering safety factor.

As a means of easily and quickly determining the number of iterations to run a bisection algorithm the calculation above is simple, easy to understand and a great little hack to remember.

Is bisection optimal?

The bisection algorithm works by dividing into two our current estimate of the interval in which the root lies. Dividing the interval in two is efficient. It is like we are playing the childhood game “Guess Who”, where we ask questions about the characters’ features in order to eliminate them.

Asking about a feature that approximately half the remaining characters possess is the most efficient – it has a reasonable probability of applying to the target character and eliminates half of the remaining characters. If we have single question, with a binary outcome and a probability p of one of those outcomes, then the question that has p = \frac{1}{2} maximizes the expected information (the entropy), p\ln (p)\;+\; (1-p)\ln(1-p).

Dividing the interval unequally

When we first played “Guess Who” as kids we learnt that asking questions with a much lower probability p of being correct didn’t win the game. Is the same true for our root finding algorithm? If instead we divide each interval into unequal portions is the root finding less efficient than when we bisect the interval?

Let’s repeat the derivation but with a different cut-point e.g. 25% along the current interval bracketing the root. In general we can test whether the root is to the left of right of a point that is a proportion \phi along the current interval, meaning the cut-point is x_{lower} + \phi (x_{upper}-x_{lower}). At each iteration we don’t know in advance which side of the cut-point the root lies until we test for it, so in trying to determine in advance the number of iterations we need to run, we have to assume the worst case scenario and assume that the root is still in the larger of the two intervals. The reduction in uncertainty is then, {\rm max}\{\phi, 1-\phi\}. Repeating the derivation we find that we have to run at least,

\displaystyle N_{Worst\;Case}\;=\;\ -\frac{\ln({\rm initial\;width/tol})}{\ln\left ({\rm max}\{\phi, 1 - \phi \right \})}

iterations to be guaranteed that we have located the root to within tol.

Now to determine the cut-point \phi that minimizes the upper bound on number of iterations required, we simply differentiate the expression above with respect to \phi. Doing so we find,

\displaystyle \frac{\partial N_{Worst\;Case}}{\partial \phi} \;=\; -\frac{\ln({\rm initial\;width/tol})}{ (1-\phi) \left ( \ln (1 - \phi) \right )^{2}} \;\;,\;\; \phi < \frac{1}{2}

and

\displaystyle \frac{\partial N_{Worst\;Case}}{\partial \phi} \;=\; \frac{\ln({\rm initial\;width/tol})}{\phi \left ( \ln (\phi) \right)^{2}} \;\;,\;\; \phi > \frac{1}{2}

The minimum of N_{Worst\;Case} is at \phi =\frac{1}{2}, although \phi=\frac{1}{2} is not a stationary point of the upper bound N_{Worst\;Case}, as N_{Worst\;Case} has a discontinuous gradient there.

That is the behaviour of the worst-case scenario. A similar analysis can be applied to the best-case scenario – we simply replace max with min in all the above formula. That is, in the best-case scenario the number of iterations required is given by,

\displaystyle N_{Best\;Case}\;=\;-\frac{\ln({\rm initial\;width/tol})}{\ln\left ({\rm min}\{\phi, 1 - \phi \right \})}

Here, the maximum of the best-case number of iterations occurs when \phi = \frac{1}{2}.

That’s the worst-case and best-case scenarios, but how many iterations do we expect to use on average? Let’s look at the expected reduction in uncertainty in the root location after N iterations. In a single iteration a root that is randomly located within our interval will lie, with probability \phi, in segement to the left of our cut-point and leads to a reduction in the uncertainty by a factor of \phi. Similarly, we get a reduction in uncertainty of 1-\phi with probability 1-\phi if our randomly located root is to the right of the cut-point. So after N iterations the expected reduction in uncertainty is,

\displaystyle {\rm Expected\;reduction}\;=\;\left ( \phi^{2}\;+\;(1-\phi)^{2}\right )^{N}

Using this as an approximation to determine the typical number of iterations, we get,

\displaystyle N_{Expected\;Reduction}\;=\;-\frac{\ln({\rm initial\;width/tol})}{\ln\left ( \phi^{2} + (1-\phi)^{2} \right )}

This still isn’t the expected number of iterations, but to see how it compares Figure 2 belows shows simulation estimates of \mathbb{E}\left ( N \right ) plotted against \phi when the root is random and uniformly distributed within the original interval.

The number of iterations needed for the bisection algorithm
Number of iterations required for the different root finding methods.

For Figure 2 we have set w = ({\rm initial\;width/tol}) = 0.01. Also plotted in Figure 2 are our three theoretical estimates, \lceil N_{Worst\;Case}\rceil, \lceil N_{Best\;Case}\rceil, \lceil N_{Expected\;Reduction}\rceil. The stepped structure in these 3 integer quantities is clearly apparent, as is how many more iterations are required under the worst case method when \phi \neq \frac{1}{2}.

The expected number of iterations required, \mathbb{E}( N ), actually shows a rich structure that isn’t clear unless you zoom in. Some aspects of that structure were unexpected, but requires some more involved mathematics to understand. I may save that for a follow-up post at a later date.

© 2022 David Hoyle. All Rights Reserved

Faa di Bruno and derivatives of an iterated function

I have recently needed to do some work evaluating high-order derivatives of composite functions. Namely, given a function f(t), evaluate the n^{th} derivative of the composite function  \underbrace{\left (f\circ f\circ f \circ \ldots\circ f \right )}_{l\text{ terms}}(t). That is, we define f_{l}(t) to be the function obtained by iterating the base function f(t)=f_{1}(t) l-1 times. One approach is to make recursive use of the Faa di Bruno formula,

\displaystyle \frac{d^{n}}{dx^{n}}f(g(x))\;=\;\sum_{k=1}^{n}f^{(k)}(g(x))B_{n,k}\left (g'(x), g''(x), \ldots, g^{(n-k+1)}(x) \right )      Eq.(1)

The fact that the exponential partial Bell polynomials B_{n,k}\left (x_{1}, x_{2},\ldots, x_{n-k+1} \right ) are available within the {\tt sympy} symbolic algebra Python package, makes this initially an attractive route to evaluating the required derivatives. In particular, I am interested in evaluating the derivatives at t=0 and I am focusing on odd functions of t, for which t=0 is then obviously a fixed-point. This means I only have to supply numerical values for the derivatives of my base function f(t) evaluated at t=0, rather than supplying a function that evaluates derivatives of f(t) at any point t.

Given the Taylor expansion of f(t) about t=0 we can easily write code to implement the Faa di Bruno formula using sympy. A simple bit of pseudo-code to represent an implementation might look like,

  1. Generate symbols.
  2. Generate and store partial Bell polynomials up to known required order using the symbols from step 1.
  3. Initialize coefficients of Taylor expansion of the base function.
  4. Substitute numerical values of derivatives from previous iteration into symbolic representation of polynomial.
  5. Sum required terms to get numerical values of all derivatives of current iteration.
  6. Repeat steps 4 & 5.

I show python code snippets below implementing the idea. First we generate and cache the Bell polynomials,

 # generate and cache Bell polynomials
 bellPolynomials = {}
 for n in range(1, nMax+1):
      for k in range(1, n+1):
         bp_tmp = sympy.bell(n, k, symbols_tmp)
         bellPolynomials[str(n) + '_' + str(k)] = bp_tmp

Then we iterate over the levels of function composition, substituting the numerical values of the derivatives of the base function into the Bell polynomials,

for iteration in range(nIterations):
    if( verbose ):
        print( "Evaluating derivatives for function iteration " + str(iteration+1) )

    for n in range(1, nMax+1):
        sum_tmp = 0.0
        for k in range(1, n+1):
            # retrieve kth derivative of base function at previous iteration
            f_k_tmp = derivatives_atFixedPoint_tmp[0, k-1]

            #evaluate arguments of Bell polynomials
            bellPolynomials_key = str( n ) + '_' + str( k )
            bp_tmp = bellPolynomials[bellPolynomials_key]
            replacements = [( symbols_tmp[i],
            derivatives_atFixedPoint_tmp[iteration, i] ) for i in range(n-k+1) ]
            sum_tmp = sum_tmp + ( f_k_tmp * bp_tmp.subs(replacements) )

        derivatives_atFixedPoint_tmp[iteration+1, n-1] = sum_tmp

Okay – this isn’t really making use true recursion, merely looping, but the principle is the same. The problem one encounters is that the manipulation of the symbolic representation of the polynomials is slow, and run-times slow significantly for n > 15.

However, the n^{th} derivative can alternatively be expressed as a sum over partitions of n as,

\displaystyle \frac{d^{n}}{dx^{n}}f(g(x))\;=\;\sum \frac{n!}{m_{1}!m_{2}!\ldots m_{n}!} f^{(m_{1}+m_{2}+\ldots+m_{n})}\left ( g(x)\right )\prod_{j=1}^{n}\left ( \frac{g^{(j)}(x)}{j!}\right )^{m_{j}}   Eq.(2)

where the sum is taken over all non-negative integers tuples m_{1}, m_{2},\ldots, m_{n} that satisfy 1\cdot m_{1}+ 2\cdot m_{2}+\ldots+ n\cdot m_{n}\;=\; n. That is, the sum is taken over all partitions of  n. Fairly obviously the Faa di Bruno formula is just a re-arrangement of the above equation, made by collecting terms involving f^{(k)}(g(x)) together, and as such that rearrangement gives the fundamental definition of the partial Bell polynomial.

I’d shied away from the more fundamental form of Eq.(2) in favour of Eq.(1) as I believed the fact that a number of terms had already been collected together in the form of the Bell polynomial would make any implementation that used them quicker. However, the advantage of the form in Eq.(2) is that the summation can be entirely numeric, provided an efficient generator of partitions of n is available to us. Fortunately, sympy also contains a method for iterating over partitions. Below are code snippets that implement the evaluation of f_{l}^{(n)}(0) using Eq.(2). First we generate and store the partitions,

# store partitions
pStore = {}
for k in range( n ):
    # get partition iterator
    pIterator = partitions(k+1)
    pStore[k] = [p.copy() for p in pIterator]

After initializing arrays to hold the derivatives of the current function iteration we then loop over each iteration, retrieving each partition and evaluating the product in the summand of Eq.(2). Obviously, it is relatively easy working on the log scale, as shown in the code snippet below,

# loop over function iterations
for iteration in range( nIterations ):

    if( verbose==True ):
        print( "Evaluating derivatives for function iteration " + str(iteration+1)  )

    for k in range( n ):
        faaSumLog = float( '-Inf' )
        faaSumSign = 1

        # get partitions
        partitionsK = pStore[k]
        for pidx in range( len(partitionsK) ):
            p = partitionsK[pidx]
            sumTmp = 0.0
            sumMultiplicty = 0
            parityTmp = 1
            for i in p.keys():
                value = float(i)
                multiplicity = float( p[i] )
                sumMultiplicty += p[i]
                sumTmp += multiplicity * currentDerivativesLog[i-1]
                sumTmp -= gammaln( multiplicity + 1.0 )
                sumTmp -= multiplicity * gammaln( value + 1.0 )
                parityTmp *= np.power( currentDerivativesSign[i-1], multiplicity )	

            sumTmp += baseDerivativesLog[sumMultiplicty-1]
            parityTmp *= baseDerivativesSign[sumMultiplicty-1]

            # now update faaSum on log scale
            if( sumTmp > float( '-Inf' ) ):
                if( faaSumLog > float( '-Inf' ) ):
                    diffLog = sumTmp - faaSumLog
                    if( np.abs(diffLog) = 0.0 ):
                            faaSumLog = sumTmp
                            faaSumLog += np.log( 1.0 + (float(parityTmp*faaSumSign) * np.exp( -diffLog )) )
                            faaSumSign = parityTmp
                        else:
                            faaSumLog += np.log( 1.0 + (float(parityTmp*faaSumSign) * np.exp( diffLog )) )
                    else:
                        if( diffLog > thresholdForExp ):
                            faaSumLog = sumTmp
                            faaSumSign = parityTmp
                else:
                    faaSumLog = sumTmp
                    faaSumSign = parityTmp

        nextDerivativesLog[k] = faaSumLog + gammaln( float(k+2) )
        nextDerivativesSign[k] = faaSumSign

Now let’s run both implementations, evaluating up to the 15th derivative for 4 function iterations. Here my base function is f(t) =1 -\frac{2}{\pi}\arccos t. A plot of the base function is shown below in Figure 1.

FaaDiBrunoExample_BaseFunction
Figure 1: Plot of the base function f(t)\;=\;1\;-\;\frac{2}{\pi}\arccos(t)

The base function has a relatively straight forward Taylor expansion about t=0,

\displaystyle f(t)\;=\;\frac{2}{\pi}\sum_{k=0}^{\infty}\frac{\binom{2k}{k}t^{2k+1}}{4^{k}\left ( 2k+1 \right )}\;\;\;,\;\;\;|t| \leq 1 \;\;,    Eq.(3)

and so supplying the derivatives, f^{(k)}(0), of the base function is easy. The screenshot below shows a comparison of f_{l}^{(15)}(0) for l\in \{2, 3, 4, 5\}. As you can see we obtain identical output whether we use sympy’s Bell polynomials or sympy’s partition iterator.

FaaDiBruno_TimingComparison

The comparison of the implementations is not really a fair one. One implementation is generating a lot of symbolic representations that aren’t really needed, whilst the other is keeping to entirely numeric operations. However, it did highlight several points to me,

  • Directly working with partitions, even up to moderate values of n, e.g. n=50, can be tractable using the sympy package in python.
  • Sometimes the implementation of the more concisely expressed representation (in this case in terms of Bell polynomials) can lead to an implementation with significantly longer run-times, even if the more concise representation can be implemented concisely (less lines of code).
  • The history of the Faa di Bruno formula, and the various associated polynomials and equivalent formalisms (such as the Jabotinksy matrix formalism) is a fascinating one.

I’ve put the code for both methods of evaluating the derivatives of an iterated function as a gist on github.

At the moment the functions take an array of Taylor expansion coefficients, i.e. they assume the point at which derivatives are requested is a fixed point of the base function. At some point I will add methods that take a user-supplied function for evaluating the k^{th} derivative, f^{(k)}(t), of the base function at any point t and will return the derivatives, f_{l}^{(k)}(t) of the iterated function.

I haven’t yet explored whether, for reasonable values of n (say n \leq 50), I need to work on the log scale, or whether direct evaluation of the summand will be sufficiently accurate and not result in overflow error.

SciPy incomplete gamma function

I got tripped up by this recently when doing eigenvalue calculations in python. I wanted to evaluate the incomplete gamma function \gamma (a, x)\;=\;\int_{0}^{x}t^{a-1}e^{-t}dt. After using the SciPy {\tt gammainc} function I was scratching my head as to why I was seeing a discrepancy between my numerical calculations for the eigenvalues and my theoretical calculation. Then I came across this post by John D Cook that helped clarify things. The SciPy function {\tt gammainc} actually calculates \gamma(a,x)/\Gamma(a).